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1. Introduction

Information on sound transmission loss characteristics of panels is essential for the design of
acoustic enclosures. Transmission loss characteristics of infinite limp panels and thin plates are
widely discussed in Refs. [1–3]. Transmission loss of limp panels increases with frequency and the
transmission loss depends on the mass per unit area of the panel. In the case of structural panels
having stiffness, the transmission loss becomes very low at specific frequencies called coincidence
frequencies. The transmission loss characteristics of such panels are theoretically obtained based
on models that assume that the panels behave like thin plates. In such models the deformation of
the transverse plane due to transverse shear stress is neglected. In the case of thick panels,
transverse shear deformation can become important.
Sound transmission loss of sandwich panels is extensively studied by many researchers. Watters

and Kurtze [4] obtained the transmission loss of sandwich panels considering the core as a spacer.
Using a variational approach Dym and Lang [5] introduced the effect of core stiffness in the
sound transmission characteristics. Extensional stiffness of the core introduces symmetric modes.
Moore and Lyon [6] presented an approximate expression for the associated coincidence
frequency called double wall resonance frequency. Apart from the symmetric coincidence, two
types of antisymmetric coincidence occur, one depending on the bending rigidity of the panel and
the other depending on the shear stiffness of the core. Moore and Lyon [6] have given the
expressions for the speed of both the types of antisymmetric wave motions. In these expressions
see front matter r 2004 Elsevier Ltd. All rights reserved.
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both the motions are uncoupled. At very high frequencies the bending wave coincidence occurs
depending on the bending rigidity of the individual face sheet. Considering all the above types of
wave motions Moore and Lyon [6] have presented the transmission loss of panels.
It is noticed that the above model for the antisymmetric wave motion involving bending of the

panel does not consider the deformation of the transverse plane due to the transverse shear
stresses. Although core shear flexibility is included in these studies, it represents shear waves and it
does not include the transverse shear effects on the bending waves. Accordingly the coincidence
frequency and the transmission loss characteristics derived do not include this effect. Renji et al.
[7] derived an expression for the coincidence frequency of the bending waves considering the
transverse shear effects. In this work, transmission loss characteristics of unbounded panels in
bending vibration considering transverse shear deformation are investigated. The expression
derived in this study directly relates the transmission loss to the critical frequency and the
transverse shear stiffness and it is expressed in the same form as that for a thin plate model.
2. Expression for transmission loss

Consider a panel with an incident acoustic field. Sound power transmission coefficient is defined
as the ratio of the intensity of the transmitted sound to the intensity of the incident sound. If Ii is
the intensity of the incident sound wave and It is the intensity of the transmitted sound wave, the
sound power transmission coefficient t is defined by

t ¼ I t=I i: (1)

Accordingly, sound transmission loss is defined by

TL ¼ 10 logð1=tÞ: (2)

Differential equation governing the bending vibration of a thin plate kept in x–y plane
subjected to an external force of q per unit area is

r4w þ ðc=DÞqw=qt þ ðr=DÞq2w=qt2 ¼ q; (3)

where c is the damping coefficient and w is the displacement of the plate in the z direction, that is
normal to the plate. The plate has a flexural rigidity of D and mass per unit area of r:
The shear deformation of the transverse plane is neglected while using Eq. (3). Considering the

deformation of the transverse plane of the plate due to the transverse shear stresses, the
differential equation becomes

r4w þ ðc=DÞqw=qt þ ðr=DÞq2w=qt2 � ðr=NÞfq2ðr2wÞ=qt2g ¼ q; (4)

where N is the shear rigidity of the plate. In the above equation the shear deformation is
represented by Mindlin’s plate theory. If G is the shear modulus of the material of the plate, the
shear rigidity of the plate having thickness t is Gt/k. The value of the parameter k is 1.20 for a
rectangular cross section. For a honeycomb panel, N is given by Gctcf1þ ðtf =tcÞg

2 where the suffix
c represents the core and f represents the face sheet. When N is very large the shear flexibility is
very low and the effect of transverse shear deformation is negligible.
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Consider a panel of infinite extent with an incident acoustic field, having wavenumber k, as
shown in Fig. 1. A part of the incident energy is reflected and the remaining energy sets the panel
into vibration. The panel radiates sound on either side. Here the sound radiated to the same side
of the incident sound is termed as the radiated sound and the sound radiated to the other side is
called the transmitted sound. Let the acoustic pressure of the incident, the reflected, the radiated
and the transmitted sound be represented by pi, pr, prad and pt, respectively. Assuming harmonic
variations, these pressures can be represented as

pi ¼ Aie
jðot�kz cos yþkx sin yÞ;

pr ¼ Are
jðotþkz cos yþkx sin yÞ;

prad ¼ Arade
jðotþkz cos yþkx sin yÞ;

pt ¼ Ate
jðot�kz cos yþkx sin yÞ; ð5Þ

where A with the appropriate suffixes represent the amplitudes. If the medium present on either
sides of the panel is the same, the sound power transmission coefficient of the panel is given by

t ¼ jAtj
2=jAij

2: (6)

The incident wave produces a trace wave in the panel and this forced wave has a wavelength of
l=sin y and wavenumber of k sin y: The displacement of the panel normal to the x–y plane, which
is due to the forced wave in the panel, becomes

w ¼ Aejðotþkx sin yÞ; (7)

where A is the amplitude of the displacement of the panel. If the speed of the acoustic wave in the
medium is denoted by c and its density is denoted by ra; the amplitude of the particle velocity in
the transmitted wave is At=rac: Satisfying the continuity of the particle velocity at the transmitted
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Fig. 1. Panel with incident acoustic field.



ARTICLE IN PRESS

K. Renji / Journal of Sound and Vibration 283 (2005) 478–486 481
side, the amplitude of the displacement of the plate is related to the amplitude of the transmitted
sound wave by the expression

A ¼ ½fAt=racg cos y�=ðjoÞ: (8)

The net acoustic pressure is

q ¼ pi þ pr þ prad � pt: (9)

Since the medium present on both sides of the plate has the same properties, the sound
power radiated to both sides of the panel are equal and hence At=�Arad. The requirement
of the continuity of the particle velocity necessitates that Ai=Ar. Using the above
results and substituting Eq. (5) in Eq. (9), the external force on the plate due to acoustic
excitation becomes

q ¼ 2ðAi � AtÞe
jot: (10)

If Zd is the loss factor, it can be written in terms of complex stiffness as

ðc=DÞqw=qt ¼ jZdr
4w: (11)

Substituting Eqs. (7), (10) and (11) by Eq. (4) yields

Dfk4 sin4 yþ jZdk4 sin4 y� ðro2=DÞ � ðro2=NÞk2 sin2 ygA ¼ 2ðAi � AtÞ: (12)

Expressing the amplitude of the displacement of the plate in terms of the amplitude of the
transmitted sound, i.e., using Eq. (8) in Eq. (12), the amplitudes of transmitted and incident sound
waves are related by

Dfk4 sin4 yþ jZdk4 sin4 y� ðro2=DÞ � ðro2=NÞk2 sin2 ygAt cos y=ðjoracÞ ¼ 2ðAi � AtÞ: (13)

If we use the relation

f 2c;t ¼ c4r=ð4p2DÞ; (14)

from Eqs. (13) and (6) the expression for sound power transmission coefficient of the panel
becomes

t�1 ¼ f1þ Zda cos y sin4 yðf =f c;tÞ
2
g2 þ a2 cos2 yf1� ðf =f c;tÞ

2 sin4 y½1� c2r=ðN sin2 yÞ�g2; (15)

where a ¼ ro=2rac: The parameter fc,t is the critical frequency of the panel without considering
the transverse shear deformation. Eq. (15) gives the sound power transmission coefficient of an
infinite panel considering transverse shear deformation.
Expressions for the sound transmission loss of thin plates and limp panels can be derived from

Eq. (15) and it can be seen that they are the same as what are existing in Refs. [1,2]. Expression for
the sound power transmission coefficient of a thin plate can be derived by setting N very large in
Eq. (15) as

t�1 ¼ f1þ Zda cos y sin4 yðf =f c;tÞ
2
g2 þ a2 cos2 yf1� ðf =f c;tÞ

2 sin4 yg2: (16)

The critical frequency of a limp panel is infinite. Hence, by taking fc,t in Eq. (15) to N, the
expression for the sound power transmission coefficient of a limp panel can be derived as

t�1 ¼ 1þ a2 cos2 y: (17)
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The frequency at which the sound power transmission coefficient is the maximum can be
determined by differentiating Eq. (15) with respect to the frequency. If no dissipation in the panel
is assumed, this frequency is

f 2 ¼ f 2c;t=f1� ½ðc2r=NÞ=sin2 y�g=sin4 y: (18)

When a panel is excited acoustically, the frequency at which the speed of the forced bending
wave in the panel is equal to the speed of the free bending wave in the panel is called the
coincidence frequency. It is expected that sound power transmission coefficient is very high at the
coincidence frequency of the panel. An expression for estimating the coincidence frequency of a
panel considering the transverse shear deformation is derived in an earlier study [7]. But the
expression for the coincidence frequency is derived without considering the sound power
transmission coefficient of the panel. Instead it is derived by equating the wavelength of the trace
wave in the panel to the wavelength of the free bending wave in the panel. From the present
results it can be seen that the frequency at which the sound power transmission coefficient is the
maximum is the coincidence frequency of the panel, denoted by fco. Same expression for
coincidence frequency is obtained from both the approaches. This confirms the correctness of the
expression for the sound power transmission coefficient derived here.
Fig. 2. Oblique incidence transmission loss of panels.
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At very low frequencies the panel behaves like a limp panel. At coincidence frequency the sound
power transmission coefficient is given by

t�1 ¼ f1þ Zda cos y sin4 yðf =f c;tÞ
2
g2; (19)

which is also true for a thin plate. For a particular value of the parameter a and angle of incidence,
the sound power transmission coefficient at the coincidence frequency is very much dependent on
the loss factor and it is independent of the shear flexibility. It is to be noted that the coincidence
frequency gets altered due to the shear flexibility and correspondingly the parameter a. This can
have an effect on the sound power transmission coefficient. At very high frequencies compared to
the coincidence frequency, the expression for the sound power transmission coefficient becomes

t�1 ¼ a2 cos2 yðf =f coÞ
4: (20)

The loss factor has no effect on the sound power transmission coefficient at higher frequencies.
The term fa2 cos2 yg�1 is the sound power transmission coefficient of the limp panels at high
frequencies. Since at higher frequencies f/fco is more than unity, the panel transmits less sound
compared to what is estimated using the limp panel model.
Fig. 3. Oblique incidence transmission loss of panels for various values of loss factors: —, 0.02; - - -, 0.01, – — –, 0.05.
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3. Transmission loss characteristics

To get a better insight into the transmission loss characteristics, transmission loss of panels for
different structural parameters are presented. Consider an infinite panel having flexural rigidity of
5000Nm and mass per unit area of 2.76 kg/m2. The panel has a shear rigidity (N) of 13� 105N/m.
The speed of sound in air is assumed to be 343m/s and the characteristics impedance of the air is
considered to be 415Rayl. The critical frequency of the panel without considering the transverse
shear deformation is estimated to be 440Hz and that considering the transverse shear
deformation is 508Hz. Let the angle of incidence be 601. The coincidence frequency of the
panel without considering the transverse shear deformation is estimated to be 587Hz and that
considering the transverse shear deformation is 718Hz. Sound transmission loss of the panel at
various frequencies, for various values of f =f c;t; for a loss factor of 0.02 is shown in Fig. 2. In Fig.
3, the transmission loss characteristics of the panel for three different values of loss factors are
shown. For this the shear rigidity of the panel is considered to be 13� 105N/m.
The results show that at low frequencies the panel behaves like limp panel. The shear flexibility

and the loss factor has no effect on the transmission loss characteristics.
The TL is the minimum at the coincidence frequency given by Eq. (18). Comparison with the

TL estimated using the thin plate model, given in Fig. 2, shows that the effect of shear flexibility is
Fig. 4. Field incidence transmission loss of panels.
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to increase the coincidence frequency. At coincidence frequency the TL is controlled by the loss
factor (Fig. 3) and it can be improved by increasing the loss factor as in the case of thin panels.
At very high frequencies the TL is higher than that estimated by the limp panel model.

Comparison with the TL estimated using the thin plate model shows that the effect of the shear
flexibility is to decrease the TL at a particular frequency. But it should be noted that the shear
flexibility does not directly reduce the transmission loss but it increases the coincidence frequency
and consequently the transmission loss at a particular frequency is reduced.
Eq. (15) gives the sound power transmission coefficient for oblique incidence. When the

acoustic field is reverberant, the sound power transmission coefficient is defined in a statistical
sense. The random incidence sound power transmission coefficient, tr; is defined by the integral [3]

tr ¼ 2:09

Z 1:36

0

t sin y cos ydy: (21)

The angle of incidence is normally considered to be in the range 0–781 and the corresponding
transmission loss is called field incidence transmission loss. Field incidence TL of the panels for
different values of shear rigidity and loss factor of 0.02 are given in Fig. 4. Results obtained for
limp panel model and thin plate model are also shown in Fig. 4. The dip seen in the transmission
loss characteristics is not as sharp as in the case of oblique incidence. Effect of loss factor on
transmission loss values is shown in Fig. 5. At higher frequencies the transmission loss is improved
Fig. 5. Field incidence transmission loss of panels for various values of loss factors: —, 0.02; - - -, 0.01, – — –, 0.05.
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due to loss factor. It is to be remembered that the loss factor has no significant effect on
transmission loss at higher frequencies when the acoustic field is at a particular angle.
4. Conclusions

An expression for the sound power transmission coefficient of an unbounded panel in bending
vibration involving antisymmetric motion is derived considering the transverse shear deformation.
The most important effect of the shear flexibility is the increase in the frequency at which the
transmission loss is the minimum. Consequently, at higher frequencies the transmission loss
values are reduced. The transmission loss can be improved by increasing the loss factor. But it is
effective only at frequencies near the coincidence frequency as in the case of thin panels. The loss
factor is effective even at higher frequencies if the acoustic field is diffused.
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